МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «ОБОЯНСКАЯ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №1»

РАССМОТРЕНА

СОГЛАСОВАНА

ПРИНЯТА

УТВЕРЖДЕНА

на заседании ШМО

с заместителем директора по

решением педагогического совета Директор

Руководитель ШМО:

МБОУ «Обоянская СОШ

.Н.Абрамова)

Черникова Е.Ю./

/Клещевникова Т.Н./

Протокол

Протокол

Nº 1

«27» 08. 2020г.

от «31» 08.2020г.

Приказ 219

от «26» 08.2020г.

Nº 1

От «31» 08.2020г.№ 1

РАБОЧАЯ ПРОГРАММА

математике (алгебре и началам анализа, геометрии)

КЛАССЫ 10-11

(углублённый уровень).

СРОКИ РЕАЛИЗАЦИИ РАБОЧЕЙ ПРОГРАММЫ 2020-2022г

Составители: Воронова Т.И. учитель математики, первая категория,

Демина Н.А.учитель математики, первая категория,

Клещевникова Т.Н. учитель математики, первая категория,

Черникова Е.Ю. учитель математики, первая категория,

Планируемые результаты освоения учебного предмета

Личностные результаты:

- 1) воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, осознания вклада отечественных учёных в развитие мировой науки;
- 2) формирование мировоззрения, соответствующего современному уровню развития науки и общественной практики;
- 3) ответственное отношение к обучению, готовность и способность к саморазвитию и самообразованию на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- 4) осознанный выбор будущей профессиональной деятельности на базе ориентирования в мире профессий и профессиональных предпочтений; отношение к профессиональной деятельности как к возможности участия в решении личных, общественных, государственных и общенациональных проблем; формирование уважительного отношения к труду, развитие опыта участия в социально значимом труде;
- 5) умение контролировать, оценивать и анализировать процесс и результат учебной и математической деятельности;
- 6) умение управлять своей познавательной деятельностью;
- 7) умение взаимодействовать с одноклассниками, детьми младшего возраста и взрослыми в образовательной, общественно-полезной, учебно-исследовательской, проектной
- и других видах деятельности;
- 8) критичность мышления, инициатива, находчивость, активность при решении математических задач.

Метапредметные результаты:

- 1) умение самостоятельно определять цели своей деятельности, ставить и формулировать для себя новые задачи в учёбе;
- 2) умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы
- действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;
- 3) умение самостоятельно принимать решения, проводить анализ своей деятельности, применять различные методы познания;
- 4) владение навыками познавательной, учебно-исследовательской и проектной деятельности;
- 5) формирование понятийного аппарата, умения создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации;

- 6) умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
- 7) формирование компетентности в области использования информационно-коммуникационных технологий;
- 8) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
- 9) умение самостоятельно осуществлять поиск в различных источниках, отбор, анализ, систематизацию и классификацию информации, необходимой для решения математических проблем, представлять её в понятной форме; принимать решение в условиях неполной или избыточной, точной или вероятностной информации; критически оценивать и интерпретировать информацию, получаемую из различных источников;
- 10) умение использовать математические средства наглядности (графики, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
- 11) умение выдвигать гипотезы при решении задачи, понимать необходимость их проверки;
- 12) понимание сущности алгоритмических предписаний и умение действовать

в соответствии с предложенным алгоритмом.

Предметные результаты:

- 1) осознание значения математики для повседневной жизни человека;
- 2) представление о математической науке как сфере математической деятельности, об этапах её развития, о её значимости для развития цивилизации;
- 3) умение описывать явления реального мира на математическом языке; представление о математических понятиях и математических моделях как о важнейшем инструментарии, позволяющем описывать и изучать разные процессы и явления;
- 4) представление об основных понятиях, идеях и методах алгебры и математического анализа;
- 5) представление о процессах и явлениях, имеющих вероятностный характер, о статистических закономерностях в реальном мире, об основных понятиях элементарной
- теории вероятностей; умение находить и оценивать вероятности наступления событий в простейших практических ситуациях и основные характеристики случайных

величин;

- 6) владение методами доказательств и алгоритмов решения; умение их применять, проводить доказательные рассуждения в ходе решения задач;
- 7) практически значимые математические умения и навыки, способность их применения к решению математических и нематематических задач, предполагающие умение:
- выполнять вычисления с действительными и комплексными числами;

- решать рациональные, иррациональные, показательные, степенные и тригонометрические уравнения, неравенства, системы уравнений и неравенств;
- решать текстовые задачи арифметическим способом, с помощью составления и решения уравнений, систем уравнений и неравенств;
- использовать алгебраический «язык» для описания предметов окружающего мира и создания соответствующих математических моделей;
- выполнять тождественные преобразования рациональных, иррациональных, показательных, степенных, тригонометрических выражений;
- выполнять операции над множествами;
- исследовать функции с помощью производной и строить их графики;
- вычислять площади фигур и объёмы тел с помощью определённого интеграла;
- проводить вычисление статистических характеристик, выполнять приближённые вычисления;
- решать комбинаторные задачи.
- 8) владение навыками использования компьютерных программ при решении математических задач.

Содержание учебного предмета 10 класс

- 1.Повторение -2 часа.
- 2. Множества, операции над множествами-8 часов

Функции и её свойства-11 часов (Элементарные функции. Исследование функций и построение их графиков элементарными методами. Основные способы преобразования графиков. Понятие обратной функции. Равносильные преобразования уравнений и неравенств. Метод интервалов) Формы и виды формирования новых знаний и способы деятельности: Фронтальная, индивидуальная, парная формы организации работы обучающихся (контрольные работы). Виды деятельности обучающихся: слушание объяснений учителя, слушание и анализ товарищей, решение задач по теме.

2.Степенная функция — 23 час (Понятие функции и еè графика. Функция у=хп. Понятие корня степени п. Корни чèтной и нечèтной степеней. Арифметический корень. Функция корня п-й степени из х. Степень с рациональным показателем. Свойства степени с рациональным показателем. Понятие степени с рациональным показателем. Иррациональные уравнения.) Формы и виды формирования новых знаний и способы деятельности: Фронтальная, индивидуальная, парная формы организации работы обучающихся (контрольные работы). Виды деятельности обучающихся: слушание объяснений учителя, слушание и анализ товарищей, решение задач по теме.

3.Тригонометрические функции-30 часов (Понятие угла. Радианная мера угла. Определение синуса и косинуса угла. Основные формулы для синуса и косинуса угла . Арксинус. Арккосинус.

Определение тангенса и котангенса угла. Основные формулы для тангенса и котангенса. Арктангенс. Арккотангенс.

Косинус разности и косинус суммы двух углов. Формулы для дополнительных углов. Синус суммы и синус разности двух углов. Сумма и разность синусов и косинусов. Формулы для двойных и половинных углов. Произведение синусов и косинусов. Формулы для тангенсов.

Функция $y = \sin x$. Функция $y = \cos x$. Функция $y = \tan x$. Функция $y = \cot x$.)

Формы и виды формирования новых знаний и способы деятельности:

Фронтальная, индивидуальная, парная формы организации работы обучающихся (контрольные работы). Виды деятельности обучающихся: слушание объяснений учителя, слушание и анализ товарищей, решение задач по теме.

4. Тригонометрические уравнения и неравенства -27 часов

(Простейшие тригонометрические уравнения. Уравнения, сводящиеся к простейшим заменой неизвестного. Применение основных тригонометрических формул для решения уравнений. Однородные уравнения. Простейшие неравенства для синуса и косинуса. Простейшие неравенства для тангенса и котангенса. Неравенства, сводящиеся к про Формы и виды формирования новых знаний и способы деятельности: Фронтальная, индивидуальная, парная формы организации работы

Фронтальная, индивидуальная, парная формы организации работы обучающихся (контрольные работы). Виды деятельности обучающихся: слушание объяснений учителя, слушание и анализ товарищей, решение задач по теме.

5.Производная и её применение -26 часв (Понятие вероятности события. Свойства вероятностей. Относительная частота события. Условная вероятность.

Независимые события. Бином Ньютона).

Формы и виды формирования новых знаний и способы деятельности:

Фронтальная, индивидуальная, парная формы организации работы обучающихся (контрольные работы). Виды деятельности обучающихся: слушание объяснений учителя, слушание и анализ товарищей, решение задач по теме.

6. Повторение 5 часов

7. Резерв 4часа

11 класс

1. Показательная и логарифмическая функции -37 часов

Степень с произвольным действительным показателем. Показательная функция. Показательные уравнения. Показательные неравенства. Логарифми и его свойства. Логарифмическая функция и ее свойства. Логарифмические уравнения. Логарифмические неравенства. Производные показательной и логарифмической функции.

Формы и виды формирования новых знаний и способы деятельности:

Фронтальная, индивидуальная, парная формы организации работы обучающихся (контрольные работы). Виды деятельности обучающихся: слушание объяснений учителя, слушание и анализ товарищей, решение задач по теме.

2.Интеграл и его применение-14 часов

Первообразная. Правила нахождения первообразной. Площадь криволинейной трапеции. Определенный интеграл. Вычисление объемов тел. **Формы и виды формирования новых знаний и способы деятельности:** Фронтальная, индивидуальная, парная формы организации работы обучающихся (контрольные работы). Виды деятельности обучающихся: слушание объяснений учителя, слушание и анализ товарищей, решение задач по теме.

3. Элементы комбинаторики. Бином Ньютона -13 часов

Метод математической индукции. Перестановки, размещения. Сочетания (комбинации). Бином Ньютона.

Формы и виды формирования новых знаний и способы деятельности: Фронтальная, индивидуальная, парная формы организации работы обучающихся (контрольные работы). Виды деятельности обучающихся: слушание объяснений учителя, слушание и анализ товарищей, решение задач по теме.

4.Элементы теории вероятности-26 часов

Операции над событиями. Зависимые и независимые события. Схема Бернулли. Случайные величины и их характеристики. Вероятность и статистика, логика, теория графов и комбинаторика Повторение. Использование таблиц и диаграмм для представления данных. Решение задач на применение описательных характеристик числовых наборов: средних, наибольшего и наименьшего значения, размаха, дисперсии и стандартного отклонения. Вычисление частот и вероятностей событий. Вычисление вероятностей в опытах с равновозможными элементарными исходами. Использование комбинаторики. Вычисление вероятностей независимых событий. Использование формулы сложения вероятностей, диаграмм Эйлера, дерева вероятностей, формулы Бернулли. Вероятностное пространство. Аксиомы теории вероятностей. Условная вероятность. Правило умножения вероятностей. Формула полной вероятности. Формула Байеса. Дискретные случайные величины и распределения. Совместные распределения. Распределение суммы и произведения независимых случайных величин. Математическое ожидание и дисперсия случайной величины. Математическое ожидание и дисперсия суммы случайных величин. Бинарная случайная величина, распределение Бернулли. Геометрическое распределение. Биномиальное распределение и его свойства. Гипергеометрическое распределение и его свойства. Непрерывные случайные величины. Плотность вероятности. Функция распределения. Равномерное распределение. Показательное распределение, его параметры.

Распределение Пуассона и его применение. Нормальное распределение. Функция Лапласа. Параметры нормального распределения. Примеры случайных величин, подчиненных нормальному закону (погрешность измерений, рост человека). Центральная предельная теорема. Неравенство Чебышева. Теорема Чебышева и теорема Бернулли. Закон больших чисел. Выборочный метод измерения вероятностей. Роль закона больших чисел в науке, природе и обществе. Ковариация двух случайных величин. Понятие о коэффициенте корреляции. Совместные наблюдения двух случайных величин. Выборочный коэффициент корреляции. Линейная регрессия. Статистическая гипотеза. Статистика критерия и ее уровень значимости. Проверка простейших гипотез. Эмпирические распределения и их связь с теоретическими распределениями. Ранговая корреляция. Построение соответствий. Инъективные и сюръективные соответствия. Биекции. Дискретная непрерывность. Принцип Дирихле. Кодирование. Двоичная запись. Основные понятия теории графов. Деревья. Двоичное дерево. Связность. Компоненты связности. Пути на графе. Эйлеровы и Гамильтоновы пути.

Формы и виды формирования новых знаний и способы деятельности:

Фронтальная, индивидуальная, парная формы организации работы обучающихся (контрольные работы). Виды деятельности обучающихся: слушание объяснений учителя, слушание и анализ товарищей, решение задач по теме..

Объем прямоугольного параллелепипеда. Объемы прямой призмы и цилиндра. Объемы наклонной призмы, пирамиды и конуса. Объем шара и площадь сферы. Объемы шарового сегмента, шарового слоя и шарового сектора.

Формы и виды формирования новых знаний и способы деятельности: Фронтальная, индивидуальная, парная формы организации работы обучающихся (контрольные работы). Виды деятельности обучающихся: слушание объяснений учителя, слушание и анализ товарищей, исследование, решение задач по теме.

5.Обобщение и повторение курса алгебры и математического анализа - 42 часа.

6.Резерв 4 часа

Тематическое планирование по учебному предмету

Алгебра и начала анализа 10 класс

1.Повторение и расширение сведений о функции 21 ч

Выпускник научится:

- понимать терминологию и символику, связанные с понятием множества;
- выполнять операции над множествами, устанавливать взаимно однозначное соответствие между множествами

Выпускник получит возможность:

- развить представление значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
- развить представление о значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки;
- освоить идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики;
- развить методы и результаты алгебры и математического анализа для построения моделей реальных процессов и ситуаций.

2.Степенная функция23 ч

Выпускник научится:

- описывать понятия: степенная функция с натуральным показателем, степенная функция с целым показателем, функция корень n-й степени, степенной функции с рациональным показателем;
- давать определения корня n-й степени, арифметического корня n-й степени, степени с рациональным показателем, равносильных уравнений, уравнения следствия, равносильных неравенств, неравенства следствия;
- понимать и доказывать теоремы: о свойствах корня n-й степени, о свойствах степени с рациональным показателем, о равносильных преобразованиях иррациональных уравнений, о равносильных преобразованиях иррациональных неравенств.

Выпускник получит возможность:

• Применять изученные определения, теоремы и формулы к решению задач.

3. Тригонометрические функции 30 ч

Выпускник научится:

- понимать определения наибольшего и наименьшего значений функции, чётной и нечётной функций, обратимой функции, взаимно обратных функций, определения области определения уравнений (неравенств), равносильных уравнений (неравенств), уравнений-следствий (неравенств-следствий), постороннего корня;
- понимать теоремы о свойствах графиков чётных и нечётных функций,
- находить наибольшее и наименьшее значения функции на множестве по её графику, исследовать функцию, заданную формулой, на чётность, строить графики функций, используя чётность или нечётность;
- преобразовывать тригонометрические выражения на основе формул сложения; формул приведения, формул двойных и половинных углов, формул суммы и разности синусов (косинусов), формул преобразования произведения тригонометрических функций в сумму;
- понимать определения арккосинуса, арксинуса, арктангенса, арккотангенса, свойства обратных тригонометрических функций, метод разложения на множители;
- находить значения обратных тригонометрических функций для отдельных табличных значений аргумента

Выпускник получит возможность:

- применять изученные определения, теоремы и формулы к решению задач, о свойстве функций, имеющих соизмеримые периоды;
- развить представление значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
- развить представление о значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки.

4. Тригонометрические уравнения и неравенства 27 ч

Выпускник научится:

- используя понятия арккосинуса, арксинуса, арктангенса, арккотангенса, решать простейшие тригонометрические уравнения;
- понимать свойства обратных тригонометрических функций;

- строить графики функций на основе графиков четырёх основных обратных тригонометрических функций; упрощать выражения, содержащие обратные тригонометрические функции;
- решать тригонометрические уравнения, сводящиеся к алгебраическим уравнениям, в частности решать однородные тригонометрические уравнения первой и второй степени, а также решать тригонометрические уравнения, применяя метод разложения на множители;
- решать простейшие тригонометрические неравенства.

Выпускник получит возможность:

- решать простейших тригонометрических уравнений;
- применять изученные определения, теоремы и формулы к решению задач;
- развить представление значение математической науки для решения задач, возникающих в теории и практике.

5.Производная и её применение 26 ч

Выпускник научится:

- понятие производной функции, физического и геометрического смысла производной; производной степени, корня; правила дифференцирования; формулы производных элементарных функций; уравнение касательной к графику функции; алгоритм составления уравнения касательной;
- понятие стационарных, критических точек, точек экстремума;
- применять производную к исследованию функций и построению графиков.

Выпускник получит возможность:

- понимать и доказывать теоремы: о непрерывности дифференцируемой функции, о правилах вычисления производной, о признаке постоянства функции, о признаке возрастания (убывания) функции, о признаке точки максимума (минимума), о признак выпуклой вверх (вниз) функции;
- понимать представление о применении геометрического смысла производной и механический смыслы теорем: Ферма, Ролля, Лагранжа;
- применять изученные определения, теоремы и формулы к решению задачв курсе математики и смежных дисциплинах.

6.Повторение курса алгебры и начал математического анализа 9 ч 7. Резерв 4ч

Тематическое планирование по учебному предмету

Алгебра и начала анализа 11 класс

1.Показательная и логарифмическая функции – 37ч.

Выпускник научится: • оперировать понятиями корня п-й степени, степени с рациональным показателем, степени с действительным показателем, логарифма; • применять понятия корня п-й степени, степени с рациональным показателем, степени с действительным показателем, логарифма и их свойства в вычислениях и при решении задач; • выполнять тождественные преобразования выражений, содержащих корень п-й степени, степени с рациональным показателем, степень с действительным показателем, логарифм; • оперировать понятиями косинус, синус, тангенс, котангенс угла поворота, арккосинус, арксинус, арктангенс и арккотангенс; • выполнять тождественные преобразования тригонометрических выражений.

Выпускник получит возможность: • выполнять многошаговые преобразования выражений, применяя широкий набор способов и приёмов; • применять тождественные преобразования выражений для решения задач из различных разделов курса. Уравнения и неравенства

Выпускник научится: • решать иррациональные, тригонометрические, показательные и логарифмические уравнения, неравенства и их системы; • решать алгебраические уравнения на множестве комплексных чисел; • понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом; • применять графические представления для исследования уравнений.

Выпускник получит возможность: • овладеть приёмами решения уравнений, неравенств и систем уравнений; применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики; • применять графические представления для исследования уравнений, неравенств, систем уравнений, содержащих параметры. Функции Выпускник научится: • понимать и использовать функциональные понятия, язык (термины, символические обозначения); • выполнять построение графиков функций с помощью геометрических преобразований; • выполнять построение графиков вида, степенных, тригонометрических, обратных тригонометрических, показательных и логарифмических функций; 7 • исследовать свойства функций; • понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.

Выпускник получит возможность: • проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; • использовать функциональные представления и свойства функций для

решения задач из различных разделов курса математики. Элементы математического анализа

Выпускник научится: • применять терминологию и символику, связанную с понятиями предел, производная, первообразная и интеграл; • находить передел функции; • решать неравенства методом интервалов; • вычислять производную и первообразную функции; • использовать производную для исследования и построения графиков функций; • понимать геометрический смысл производной и определённого интеграла; • находить вторую производную, понимать её геометрический и физический смысл; • вычислять определённый интеграл; • вычислять неопределённый интеграл. Выпускник получит возможность: • сформировать представление о применении геометрического смысла производной и интеграла в курсе математики, в смежных дисциплинах; • сформировать и углубить знания об интеграле.

Степень с произвольным действительным показателем. Показательная функция.

Показательные уравнения и неравенства. Логарифм и его свойства. Логарифмическая функция и её свойства. Логарифмические уравнения и неравенства. Производные показательной и логарифмической функций.

1. Интеграл и его применение- 14 ч.

Выпускник научится: • применять терминологию и символику, связанную с понятиями предел, производная, первообразная и интеграл; • находить передел функции; • решать неравенства методом интервалов; • вычислять производную и первообразную функции; • использовать производную для исследования и построения графиков функций; • понимать геометрический смысл производной и определённого интеграла; • находить вторую производную, понимать её геометрический и физический смысл; • вычислять определённый интеграл; • вычислять неопределённый интеграл. Выпускник получит возможность: • сформировать представление о применении геометрического смысла производной и интеграла в курсе математики, в смежных дисциплинах; • сформировать и углубить знания об интеграле.

Первообразная. Правила нахождения первообразной. Площадь криволинейной трапеции. Определённый интеграл. Вычисление объёмов тел.

2. Элементы комбинаторики. Бином Ньютона- 13 ч.

- Выпускник научится:
- решать комбинаторные задачи на нахождение количества объектов или комбинаций;
- применять форму бинома Ньютона для преобразования выражений;
- использовать метод математической индукции для доказательства теорем и решения задач;
- использовать способы представления и анализа статистических данных;

- выполнять операции над событиями и вероятностями. Выпускник получит возможность:
- научиться специальным приёмам решения комбинаторных задач;
- характеризовать процессы и явления, имеющие вероятностный характер. Метод математической индукции. Перестановки, размещения, сочетания. Бином Ньютона.

Элементы теории вероятности – 26ч.

Выпускник научится:

- использовать способы представления и анализа статистических данных;
- выполнять операции над событиями и вероятностями. Выпускник получит возможность:
- характеризовать процессы и явления, имеющие вероятностный характер Выпускник получит возможность изучить элементы комбинаторики и бином Ньютона. Аксиомы теории вероятностей. Условная вероятность. Независимые события. Случайная величина. Схема Бернули. Биноминальное распределение. Характеристики случайной величины. Математическое ожидание суммы случайных величин.
- 3. Обобщение и повторение 42ч
- 6. Резерв- 4 ч

Планируемые результаты освоения учебного предмета

Геометрия 10 класс

Выпускник научится:

- перечислять и описывать основные понятия стереометрии;
- понимать аксиомы стереометрии. Разъяснять и иллюстрировать аксиомы. Способы задания плоскости в пространстве. Формулировать и доказывать теоремы следствия из аксиом;
- понимать и доказывать геометрические утверждения;
- описывать виды многогранников (пирамида, тетраэдр, призма, прямоугольный параллелепипед, куб), а также их элементы (основания, боковые грани, рёбра основания, боковые рёбра);
- владеть геометрическими понятиями при решении задач и проведении математических рассуждений.

Выпускник получит возможность:

• развить возможности геометрического языка как средства описания свойств реальных предметов и их взаимного расположения;

- использовать универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности;
- применять различные требования, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике;
- возможность построения математических теорий на аксиоматической основе; значение аксиоматики для других областей знания и для практики.

Планируемые результаты освоения учебного предмета

Геометрия 11 класс

- Выпускник научится:
- значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
- значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
- универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
- вероятностный характер различных процессов окружающего мира;
- Выпускник получит возможность:
- распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
- описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
- анализировать в простейших случаях взаимное расположение объектов в пространстве;

- изображать основные многогранники и круглые тела, выполнять чертежи по условиям задач;
- строить простейшие сечения куба, призмы, пирамиды;
- решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);
- использовать при решении стереометрических задач планиметрические факты и методы;
- проводить доказательные рассуждения в ходе решения задач; использовать приобретенные знания и умения в практической деятельности
 - и повседневной жизни для:
 - исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
 - вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.

Содержание курса геометрии 10 класс

- 1.Введение в стереометрию-7 часов (Предмет стереометрия. Основные понятия и аксиомы стереометрии. Первые следствия из аксиом). Формы и виды формирования новых знаний и способы деятельности: Фронтальная, индивидуальная, парная формы организации работы обучающихся (контрольные работы). Виды деятельности обучающихся: слушание объяснений учителя, слушание и анализ товарищей, решение задач по теме.
- **2.Параллельность в пространстве-18 часов** (Параллельность прямых, прямой и плоскости. Взаимное расположение прямых в пространстве. Угол между прямыми. Параллельность плоскостей. Тетраэдр и параллелепипед.) **Формы и виды формирования новых знаний и способы деятельности:** Фронтальная, индивидуальная, парная формы организации работы обучающихся (контрольные работы). Виды деятельности обучающихся: слушание объяснений учителя, слушание и анализ товарищей, исследование, решение задач по теме.

3.Перпендикулярность в пространстве -18 часов (Перпендикулярность прямой и плоскости. Перпендикуляр и наклонные. Угол между прямой и плоскостью. Двугранный угол. Перпендикулярность плоскостей. *Трёхгранный угол. Многогранный угол.*)

Формы и виды формирования новых знаний и способы деятельности: Фронтальная, индивидуальная, парная формы организации работы обучающихся (контрольные работы). Виды деятельности обучающихся: слушание объяснений учителя, слушание и анализ товарищей, исследование, решение задач по теме.

4.Многогранники -156часов (Понятие многогранника. *Геометрическое тело. Теорема Эйлера. Пространственная теорема*

Пифагора. Призма. Пирамида. Правильные многогранники.)

Формы и виды формирования новых знаний и способы деятельности: Фронтальная, индивидуальная, парная формы организации работы

обучающихся (контрольные работы). Виды деятельности обучающихся: слушание объяснений учителя, слушание и анализ товарищей, исследование, моделирование и конструирование, решение задач по теме.

- 5.Обобщение и систематизация знаний учащихся-54часа
- 6. Резерв 4 часа.

Содержание курса геометрии 11 класс

1. Координаты и векторы в пространстве-19часов

Понятие вектора в пространстве. Сложение и вычитания векторов. Умножение вектора на число. Компланарные векторы. точки и координаты вектора. Скалярное произведение векторов. Движение.

Формы и виды формирования новых знаний и способы деятельности: Фронтальная, индивидуальная, парная формы организации работы обучающихся (контрольные работы). Виды деятельности обучающихся: слушание объяснений учителя, слушание и анализ товарищей, исследование, решение задач по теме.

2.Тела вращения-15 часов

Понятие цилиндра. Площадь поверхности цилиндра. Понятие конуса. Площадь поверхности конуса. Усеченный конус. Сфера и шар. Уравнение сферы. Взаимное расположение сферы и плоскости. Касательная плоскость к сфере. Площадь сферы.

Формы и виды формирования новых знаний и способы деятельности: Фронтальная, индивидуальная, парная формы организации работы обучающихся (контрольные работы). Виды деятельности обучающихся: слушание объяснений учителя, слушание и анализ товарищей, исследование, решение задач по теме.

- 3. Объемы тел. Площадь сферы-20 часов
- 4.Обобщение и систематизация знаний учащихся-10часов
- 5. Резерв 4 часа.

Тематическое планирование по учебному предмету Геометрия 10 класс

1.Введение в стереометрию 7 ч

Выпускник научится:

- перечислять и описывать основные понятия стереометрии;
- понимать аксиомы стереометрии. Разъяснять и иллюстрировать аксиомы. Способы задания плоскости в пространстве. Формулировать и доказывать теоремы следствия из аксиом;
- понимать и доказывать геометрические утверждения;
- описывать виды многогранников (пирамида, тетраэдр, призма, прямоугольный параллелепипед, куб), а также их элементы (основания, боковые грани, рёбра основания, боковые рёбра);
- владеть геометрическими понятиями при решении задач и проведении математических рассуждений Выпускник получит возможность:
- развить возможности геометрического языка как средства описания свойств реальных предметов и их взаимного расположения;
- использовать универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности;
- применять различные требования, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике;
- возможность построения математических теорий на аксиоматической основе; значение аксиоматики для других областей знания и для практики

2.Параллельность прямых и плоскостей 18ч

Выпускник научится:

• понимать и доказывать геометрические утверждения;

- самостоятельно формулировать определения геометрических фигур, выдвигать гипотезы о новых свойствах и признаках геометрических фигур и обосновывать или опровергать их, обобщать или конкретизировать результаты на новых классах фигур, проводить в несложных случаях классификацию фигур по различным основаниям;
- исследовать чертежи, включая комбинации фигур, извлекать, интерпретировать и преобразовывать информацию, представленную на чертежах;
- решать задачи геометрического содержания, в том числе в ситуациях, когда алгоритм решения не следует явно из условия, выполнять необходимые для решения задачи дополнительные построения, исследовать возможность применения теорем и формул для решения задач;

Выпускник получит возможность:

- применять теоремы о параллельности прямых и плоскостей в пространстве при
- решении задач;
- уметь строить сечения многогранников с использованием различных методов, в том числе и метода следов;
- развить возможности геометрического языка как средства описания свойств реальных предметов и их взаимного расположения.

3.Перпендикулярность прямых и плоскостей 18ч

Выпускник научится:

- понимать определения: угла между пересекающимися прямыми; угла скрещивающимися прямыми; прямой, перпендикулярной между плоскости; угла между прямой и плоскостью; угла между двумя плоскостями; перпендикулярных плоскостей; точек, симметричных плоскости; фигур, симметричных относительно относительно плоскости; расстояния от точки до фигуры; расстояния от прямой до параллельной ей плоскости; расстояния между параллельными плоскостями; общего перпендикуляра двух скрещивающихся прямых;
- понимать и доказывать признаки: перпендикулярности прямой и плоскости, перпендикулярности двух плоскостей;
- понимать и доказывать теоремы: о перпендикуляре и наклонной, проведённых из одной точки; о трёх перпендикулярах; о площади ортогональной проекции выпуклого многоугольника

Выпускник получит возможность:

• решать задачи на доказательство, а также вычисление: угла между прямыми, угла между прямой и плоскостью, угла между плоскостями, расстояния от точки до прямой, расстояния от точки до плоскости,

- расстояния между скрещивающимися прямыми, расстояния между параллельными плоскостями, площади ортогональной проекции выпуклого многоугольника;
- развить возможности геометрического языка как средства описания свойств реальных предметов и их взаимного расположения.

14. Многогранники 16 ч

Выпускник научится:

- понятия: описывать геометрическое тело, соседние грани многогранника, плоский угол многогранника, двугранный УГОЛ многогранника, площадь поверхности многогранника, диагональное сечение призмы, противолежащие грани параллелепипеда, диагональное сечение призмы и пирамиды, усечённая пирамида;
- понимать определения: многогранника, выпуклого многогранника, призмы, прямой призмы, правильной призмы, параллелепипеда, пирамиды, правильной пирамиды, правильного тетраэдра, высоты призмы, высоты прамиды, высоты усечённой пирамиды, апофемы правильной пирамиды

Выпускник получит возможность:

- решать задачи на доказательство, а также вычисление: элементов призмы и пирамиды, площади полной и боковой поверхности призмы и пирамиды;
- владеть понятиями стереометрии: призма, параллелепипед, пирамида, тетраэдр;
- развить возможности геометрического языка как средства описания свойств реальных предметов и их взаимного расположения.
- Повторение 9ч
- Резерв 4ч.

Тематическое планирование по учебному предмету Геометрия 11 класс

1. Координаты и векторы в пространстве (19ч)

Выпускник научится:

- оперировать понятием «декартовы координаты в пространстве»;
- находить координаты вершин куба и прямоугольного параллелепипеда;

- находить примеры математических открытий и их авторов, в связи с отечественной и всемирной историей;
- понимать роль математики в развитии России.

Выпускник получит возможность:

- применять для решения задач геометрические факты, если условия применения заданы в явной форме;
- решать задачи на нахождение геометрических величин по образцам или алгоритмам;
- делать плоские (выносные) чертежи из рисунков объёмных фигур, в том числе рисовать вид сверху, сбоку, строить сечения многогранников;
- использовать свойства геометрических фигур для решения задач практического характера и задач из других областей знаний;
- решать простейшие задачи введением векторного базиса.

2.Тела вращения (15ч)

Выпускник научится:

- извлекать информацию о пространственных геометрических фигурах, представленную на чертежах;
- применять теорему Пифагора при вычислении элементов стереометрических фигур;
- находить объёмы и площади поверхностей простейших многогранников с применением формул;
- распознавать тела вращения: конус, цилиндр, сферу и шар;
- использовать свойства пространственных геометрических фигур для решения задач практического содержания;
- соотносить площади поверхностей тел одинаковой формы и различного размера;
- оценивать форму правильного многогранника после спилов, срезов и т. п. (определять количество вершин, рёбер и граней полученных многогранников).

Выпускник получит возможность:

- применять геометрические факты для решения задач, в том числе предполагающих несколько шагов решения;
- описывать взаимное расположение прямых и плоскостей в пространстве;
- формулировать свойства и признаки фигур;
- доказывать геометрические утверждения;
- задавать плоскость уравнением в декартовой системе координат.

3. Объемы тел. Площадь сферы (20ч)

Выпускник научится:

- находить объёмы и площади поверхностей простейших многогранников с применением формул;
- распознавать тела вращения: конус, цилиндр, сферу и шар;
- вычислять объёмы и площади поверхностей простейших многогранников и тел вращения с помощью формул;
- находить примеры математических открытий и их авторов, в связи с отечественной и всемирной историей;

- использовать свойства пространственных геометрических фигур для решения задач практического содержания;
- соотносить площади поверхностей тел одинаковой формы и различного размера;
- оценивать форму правильного многогранника после спилов, срезов и т. п. (определять количество вершин, рёбер и граней полученных многогранников).

Выпускник получит возможность:

- формулировать свойства и признаки фигур;
- доказывать геометрические утверждения;
- задавать плоскость уравнением в декартовой системе координат;
- владеть стандартной классификацией пространственных фигур (пирамиды, призмы, параллелепипеды);
- использовать свойства геометрических фигур для решения задач практического характера и задач из других областей знаний.

4. Повторение и систематизация учебного материала (10ч) **5.** Резерв 4ч.